

TPD Workshop C: De-risking Clinical Development of a Novel Protein Degrader

Alice McDonald

Workshop Agenda & Goals

INTRODUCTION to Kymera and IRAK4 TPD program - 8:30-8:40

PART1 8:40-9:10

Summarize the non-interventional (NI) study and biomarker end points

Discussion topics: Other opportunities / experiences from participants

Define IRAK4 baseline expression levels and localization

Discussion topics: Gaining support for both qualitative and quantitative assays

Establish KT-474 degrader Proof of Mechanism (PoM) ex vivo

Discussion topics: Assessing assay dynamic range and defining values for samples < LLOQ

Demonstrate how the NI study supported IRAK4 biological Proof of Concept (PoC) in HS

Discussion topics: Considerations moving from pre-clinical PoC into the clinic

PART 1 Discussion: 9:10-9:25

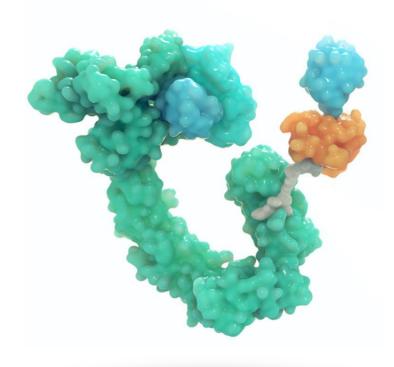
BREAK: 9:25-9:35

PART2 9:35-10:05

Introduce KT-474 Phase1 study and exploratory endpoints

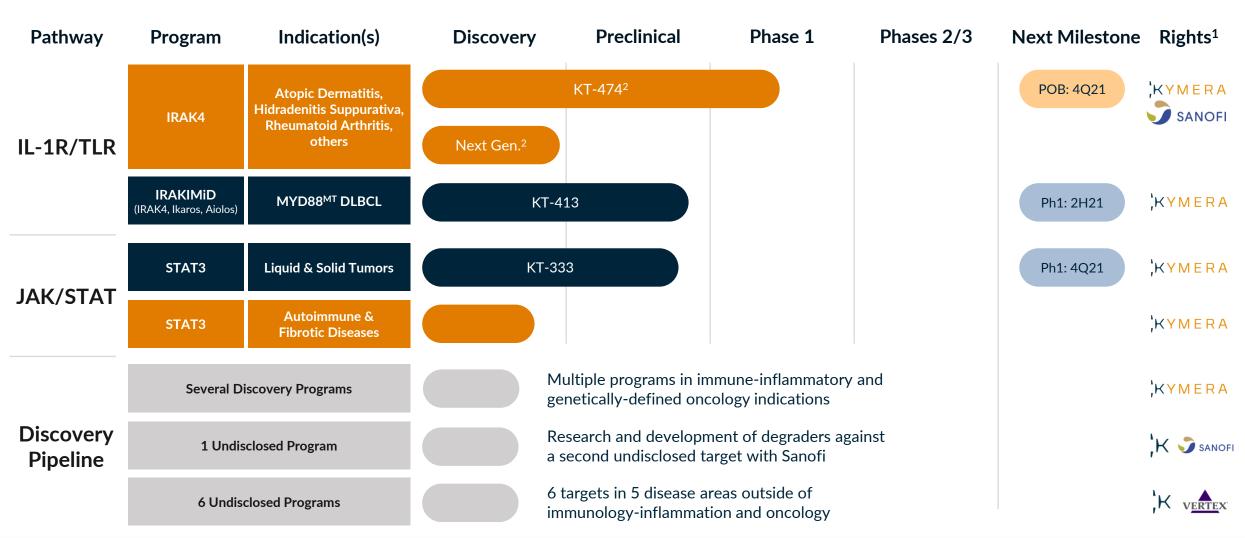
Discussion topics: Secondary vs exploratory endpoints for translational assays

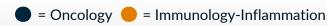
Demonstrate successful implementation of KT-474 Phase 1 PD assays


Discussion topics: Additional methods for monitoring proof of degradation

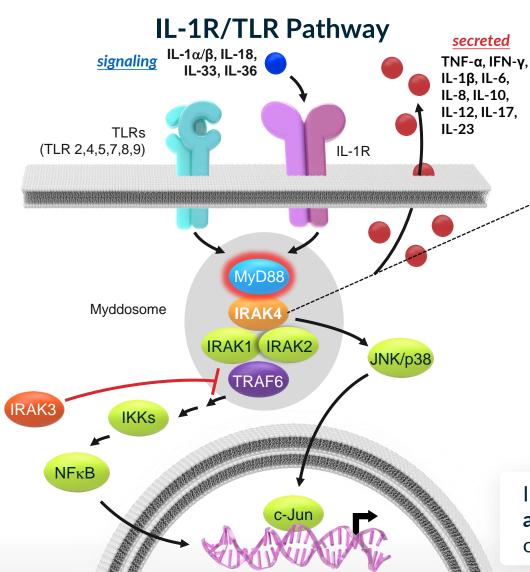
Present additional KT-474 Phase 1 PD assays not evaluated in NI Study

Discussion topics: High level considerations when implementing translational biomarkers in clinical studies

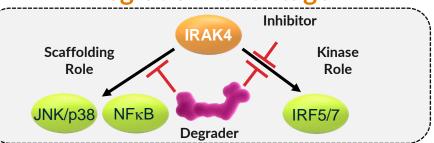

PART2 Discussion 10:05-10:30



Kymera's Pipeline of Novel Protein Degraders


^{1.} Option to participate equally in the development and commercialization of Sanofi-partnered programs in the US.

^{2.} Sanofi collaboration to develop IRAK4 degrader candidates, including KT-474 (SAR444656), outside of oncology and immuno-oncology fields.



IRAK4 Targeting: Degrader Advantage, Clinical Validation, and Human Genetics De-risking

Degrader Advantage

Clinical Pathway Validation

IL-1α/IL-1β: Rheumatoid Arthritis, CAPS, Hidradenitis Suppurativa

IL-1α: Atopic Dermatitis

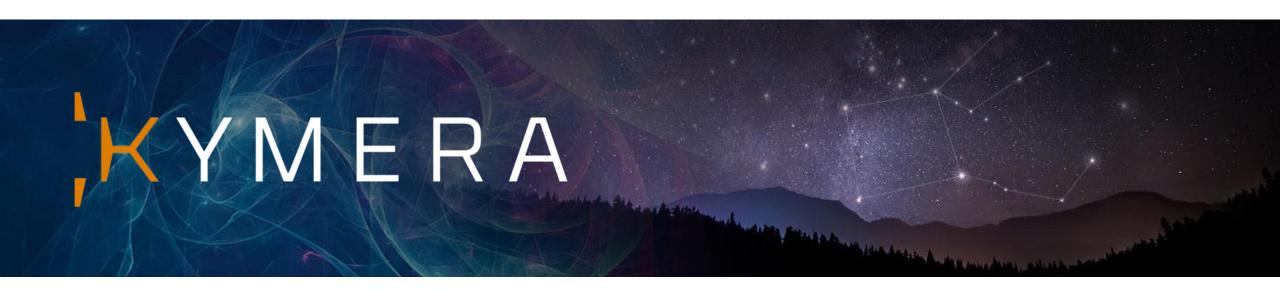
IL-1β: Gout; CANTOS Outcomes Data in Atherosclerosis and Lung Cancer

IL-18: Macrophage Activation Syndrome

IL-36: Generalized Pustular Psoriasis

IRAK4 SMI: Rheumatoid Arthritis

Human Genetics


Humans with IRAK4 Null Mutation are healthy

IRAK4 degrader has potential to achieve a **broad**, **well-tolerated anti-inflammatory effect**, providing multiple development opportunities in autoimmune inflammatory diseases

TPD Workshop C: De-risking Clinical Development of a Novel Protein Degrader

Part 1: A non-interventional study in Hidradenitis Suppurativa (HS) & Atopic Dermatitis (AD) patients to de-risk clinical development of the IRAK4 degrader KT-474

Non-interventional Study of IRAK4 and Inflammatory Biomarkers in HS and AD Patients

	Design			
Number of Sites	Single center (York Dermatology Clinic and Research Center, Ontario, Canada)			
	Pls: Dr. Afsaneh Alavi, MD, MSch, FRCPC, Mayo Clinic			
	Dr. Michael Cecchini, MD York Dermatology			
Number of Patients	40 (30 HS and 10 AD)			
Inclusion Criteria	1. Age 18 or older			
	Active Hidradenitis Suppurativa (HS) or Atopic Dermatitis (AD), diagnosed by PI			
	Mild, moderate, and severe HS (by IHS4 score) or AD (by EASI score) patients			
Exclusion Criteria	 Patients currently on a biologic or other immunosuppressive treatment for HS or AD 			
	Use of biologic treatment for HS or AD within 3 months or 5 half- lives, whichever is longer			
	 Use of non-biologic immunosuppressive treatment (e.g. Cyclosporin) in the last 4 weeks. 			
Data Collection at Study Entry	Medical history, disease severity in HS (Hurley, PGA, IHS4, HASI) and AD (EASI), prior treatments, comorbidities, duration of disease			
Sample Collection	Whole blood, plasma, skin (Lesion [L], Peri-lesion [PL: <2 cm away from lesion], Non-lesion [NL: >10 cm away from lesion])			

Baseline Demographics & Biomarkers

Study Duration	FPI: 28May2020Completed: 24Mar2021				
Patients Enrolled to Date	30 HS: 9 mild, 10 moderate, 11 severe10 AD: 8 mild, 1 moderate, 1 severe				
Demographics	 Age 19-78 yrs. 13 male, 27 Female Duration of disease: 1-56 years Race: 98% were non-Hispanic or Latino 				
Biomarker Endpoints	 Targeted MS of IRAK4 in skin biopsies IRAK4 immunofluorescence in skin biopsies Proinflammatory gene transcripts in skin biopsies Flow cytometry for IRAK4 in ex vivo treated whole blood Cytokines from ex vivo treated whole blood 				
Reporting Status	 October 2020 SHSA Meeting: Interim data on IRAK4 expression in HS skin and blood May 2021 SID Meeting: Complete HS skin dataset for IRAK4 protein and proinflammatory gene transcripts as well as healthy skin and monocyte controls 				

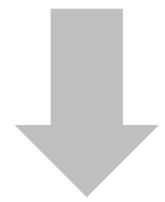
PART 1: De-Risking KT-474 Phase 1

Key Goals of Non-Interventional Study

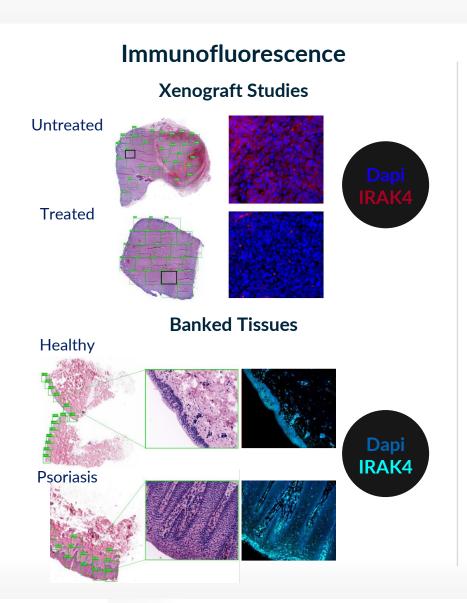
Define IRAK4 expression and localization in skin of diseased patients & healthy subjects

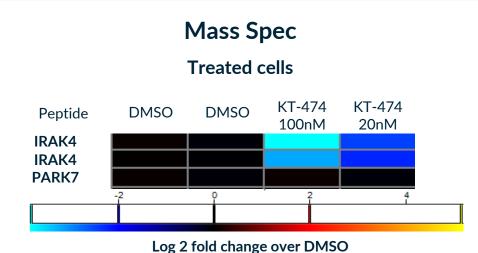
 Provide understanding of baseline IRAK4 expression and localization among healthy and diseased patient skin biopsies

Establish degrader POM in patient samples

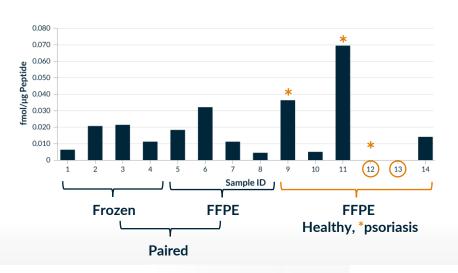

- Demonstrate biological PoC:
 - Expression pattern of proinflammatory genes
 - Correlation of proinflammatory gene expression with IRAK4 protein expression

Biomarker Endpoints

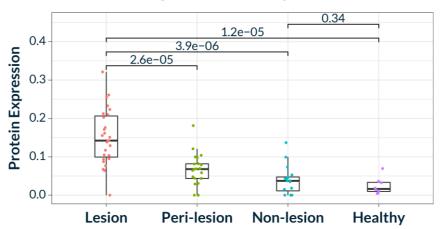

- Targeted MS of IRAK4 in skin biopsies
- IRAK4 immunofluorescence in skin biopsies
- Proinflammatory gene transcripts in skin biopsies
- Flow cytometry for IRAK4 in ex vivo treated whole blood


IRAK4 Detection Method Development in Skin

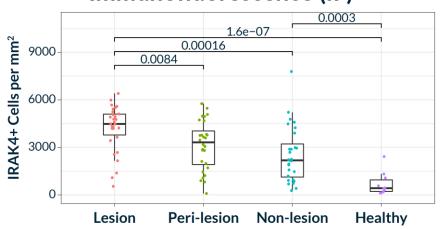
Detection & Knock Down in Treated Samples



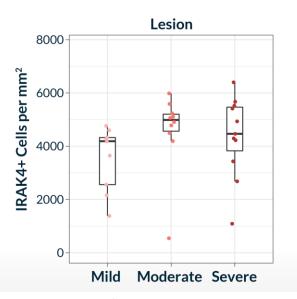
Detection In Healthy & Inflamed Tissues

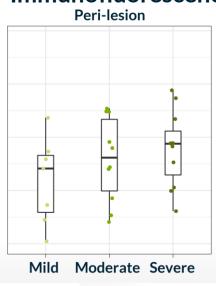


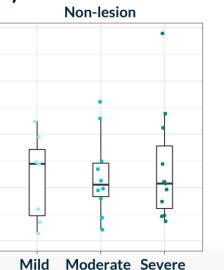
Banked Tissues: IRAK4 Absolute Quantities

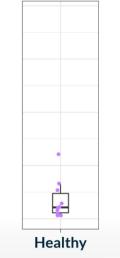


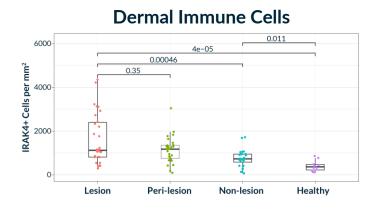
IRAK4 Protein Expression is Elevated in HS Skin Compared to Skin from Healthy Subjects

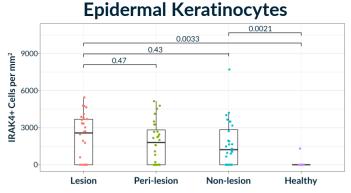



Immunofluorescence (IF)

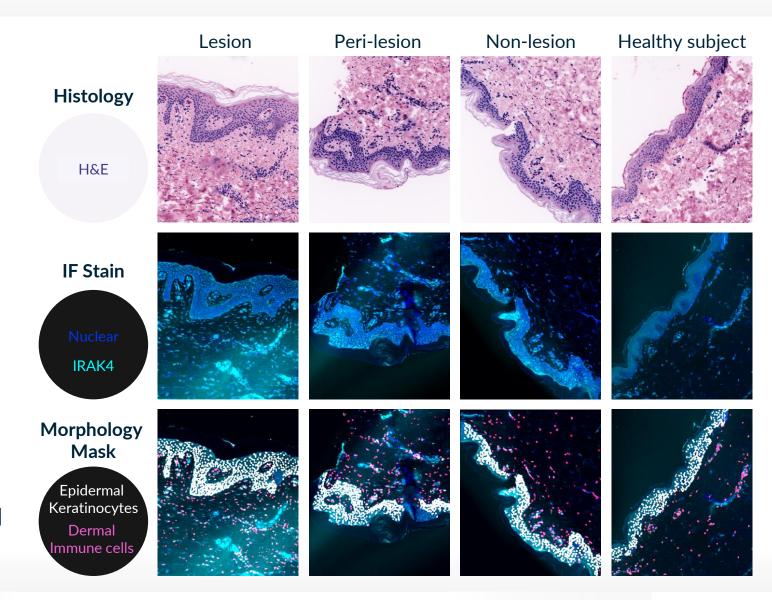



- Concordance between IF and MS for HS patients
- HS patients: Lesion > Peri-lesion > Non-lesion
- Significant difference between HS Non-lesion skin and Healthy subject skin




Healthy

Similar expression across disease severity*


*By IHS4 severity score

IF: Localization of IRAK4 Expression in Skin

IF developed for use in PH1 skin biopsies to assess KT-474 knock down in dermal immune vs epidermal compartments of the skin

PAGE 10

PART 1: De-Risking KT-474 Phase 1

Key Goals of Non-Interventional Study

Define IRAK4 expression and localization in skin of diseased patients & healthy subjects

 Provide understanding of baseline IRAK4 expression and localization among healthy and diseased patient skin biopsies

Measure IRAK4 knock down in PBMC following ex vivo treatment with degrader

Establish degrader POM in patient samples

Assess immune biomarkers in HS & AD lesion and non-lesion skin biopsies

- Demonstrate biological PoC:
 - Expression pattern of proinflammatory genes
 - Correlation of proinflammatory gene expression with IRAK4 protein expression

Biomarker Endpoints

- Targeted MS of IRAK4 in skin biopsies
- IRAK4 immunofluorescence in skin biopsies
- Proinflammatory gene transcripts in skin biopsies
- Flow cytometry for IRAK4 in ex vivo treated whole blood

Method Development of IRAK4 Flow Assay in Blood from Healthy Donors

Objective: Detect IRAK4 levels in circulating lymphocyte subsets and monocytes

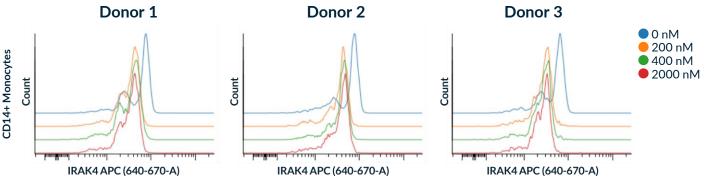
Flow Immune Panel

CD14+: Monocytes

CD16CD56+: NK cells

CD19+: B cells

CD3+: T cells (total)


CD4+: T helper cells

CD8+: Cytotoxic T cells

IRAK4

Assay Parameters	Final Recommendation			
Anti-coagulant	Na Heparin			
Shipping conditions	Ship @ 4C within 30 minutes of draw			
Cell pellet stability	over 72 hours @-20			
Cell stability @ -80C	Up to 28 days with no sign of degradation			

Equal Degradation of KT-474 at 200, 400 and 2000nM

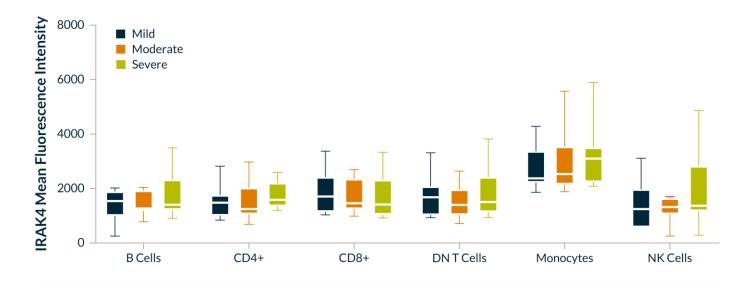
Results from this study helped determine ex-vivo treatment conditions in NI trial

KT-474 at 200nM for 24 hours

Blocking Control to Determine Floor of Assay

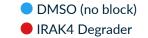
Stain immune panel with IRAK4 +/- Blocking control concentration pre-determined in optimization experiments

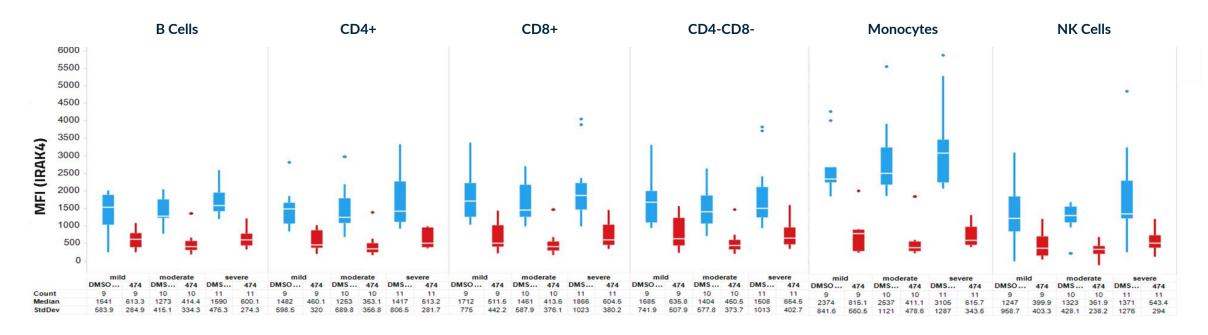
FLOW Assay Defined Baseline IRAK4 Expression in Immune Cells from HS Patients


IRAK4 Expression in Blood Immune Cells

N=30 patients, *One-way ANOVA p≤0.0006

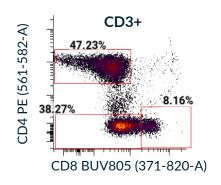
- IRAK4 levels detected in circulating cells from HS patients
- Monocytes express IRAK4 at significantly higher levels compared to other immune subsets


IRAK4 Expression in Blood Immune Cells by HS Disease Severity (IHS4)



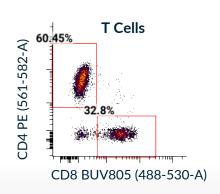
 IRAK4 levels remain the same in patients across disease severity (same results obtained with HS-PGA and Hurley (Max) staging), with a trend of higher IRAK4 median expression in patients with more severe disease

Ex-vivo Treatment of KT-474 Leads to IRAK4 Knockdown (POM)

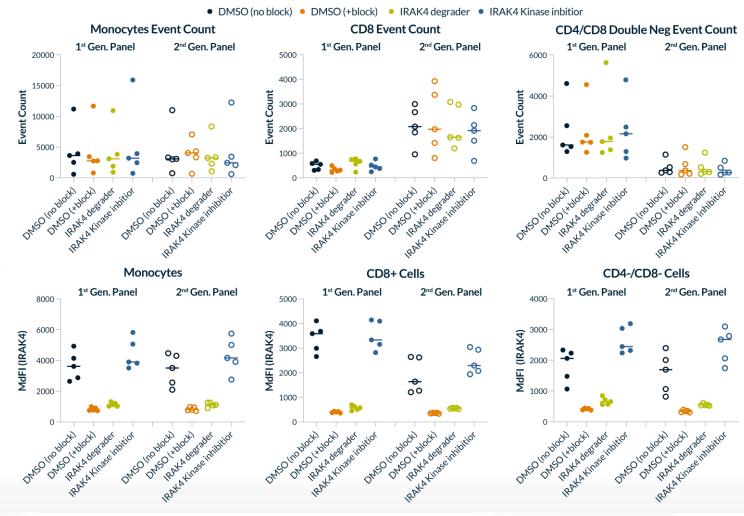


- Treatment with KT-474 leads to reduction of IRAK4 to a similar level across multiple immune subsets, regardless of baseline expression level or disease severity
- Up to an average of 80% ± 9% knockdown of IRAK4 was observed with ex vivo KT-474 treatment

Immunophenotyping Strategy with HS Patient Samples Led to 2nd Generation Panel Development for Phase I


1st Generation Panel:

CD14+/CD16CD56+/CD19+/CD3+/CD4+/CD8+ Resolution of T cell subsets was Suboptimal in patient samples



2nd Generation Panel:

CD45+/CD14+/CD16/CD56+/CD19+/CD3+/CD4+/CD8+ Improved identification of CD4+ and CD8+ cells

Increased Frequency of CD8+ Cells Led to a Decrease in IRAK4 MFI, and Less DN T cells

PART 1: De-Risking KT-474 Phase 1

Key Goals of Non-Interventional Study

Define IRAK4 expression and localization in skin of diseased patients & healthy subjects

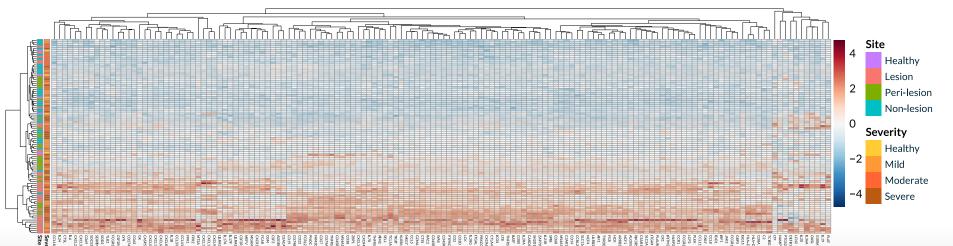
 Provide understanding of baseline IRAK4 expression and localization among healthy and diseased patient skin biopsies

Measure IRAK4 knock down in PBMC following ex vivo treatment with degrader

Establish degrader POM in patient samples

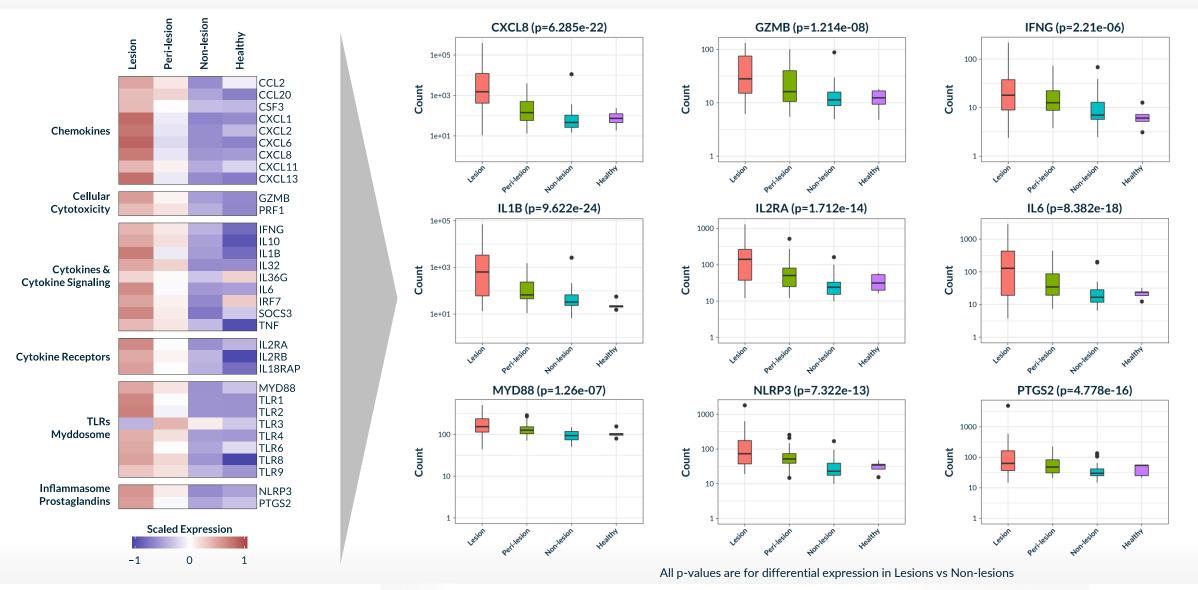
Assess immune biomarkers in HS & AD lesion and non-lesion skin biopsies

- Demonstrate biological PoC:
 - Expression pattern of proinflammatory genes
 - Correlation of proinflammatory gene expression with IRAK4 protein expression

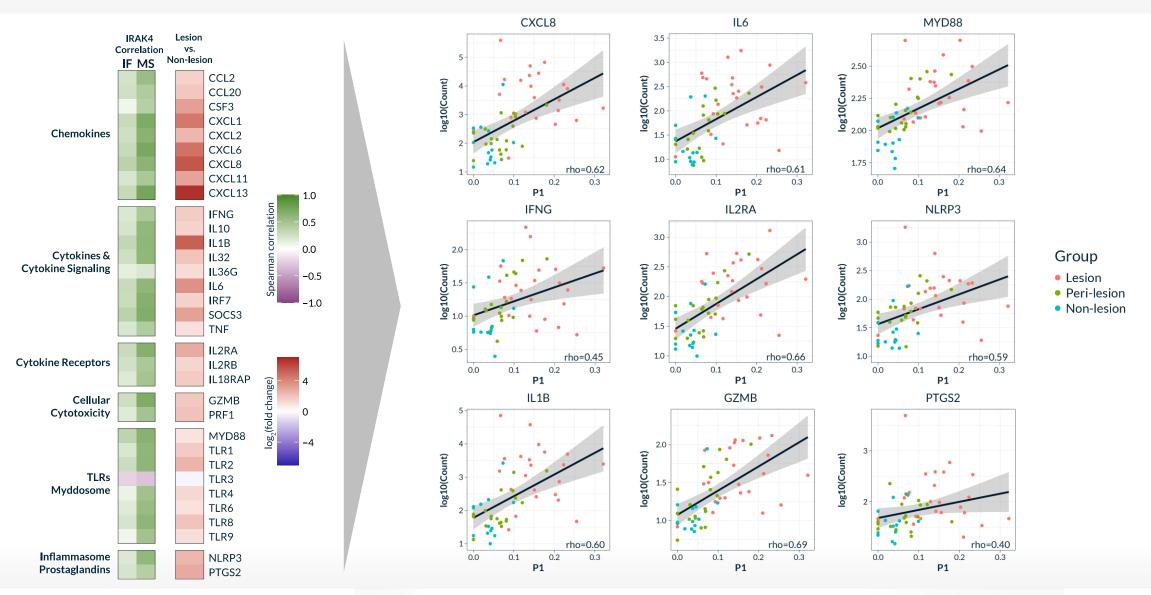

Biomarker Endpoints

- Targeted MS of IRAK4 in skin biopsies
- IRAK4 immunofluorescence in skin biopsies
- Proinflammatory gene transcripts in skin biopsies
- Flow cytometry for IRAK4 in ex vivo treated whole blood

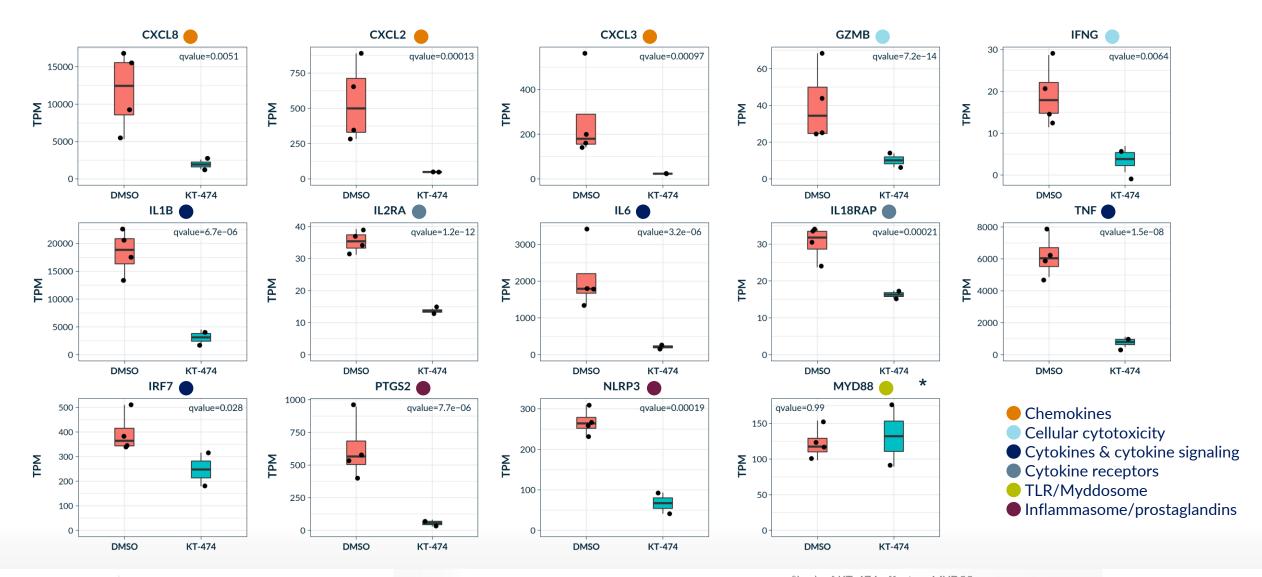
Transcriptional Profiling of Inflammatory Gene Transcripts in HS Skin Identified Biomarkers to Monitor in Patients on KT-474 Phase 1 Trial


Differentially Expressed Genes - Lesion vs Non-lesion

p-value < 0.0001, fold change >= 4


Lesion samples show many upregulated genes relative to Periand Non-lesion samples

Transcripts for Multiple Mediators of Inflammation are Upregulated in HS Skin Lesions



PAGE 18

Multiple Proinflammatory Transcripts Correlate with IRAK4 Protein Levels in HS Skin Lesions

IRAK4 Degrader KT-474 Inhibits TLR-Mediated Induction of HS-Overexpressed Proinflammatory Transcripts in Healthy Monocytes

PART 1: De-Risking KT-474 Phase 1

Key Goals of Non-Interventional Study

Define IRAK4 expression and localization in skin of diseased patients & healthy subjects

 Provide understanding of baseline IRAK4 expression and localization among healthy and diseased patient skin biopsies

Measure IRAK4 knock down in PBMC following ex vivo treatment with degrader

Establish degrader POM in patient samples

Assess immune biomarkers in HS & AD lesion and non-lesion skin biopsies

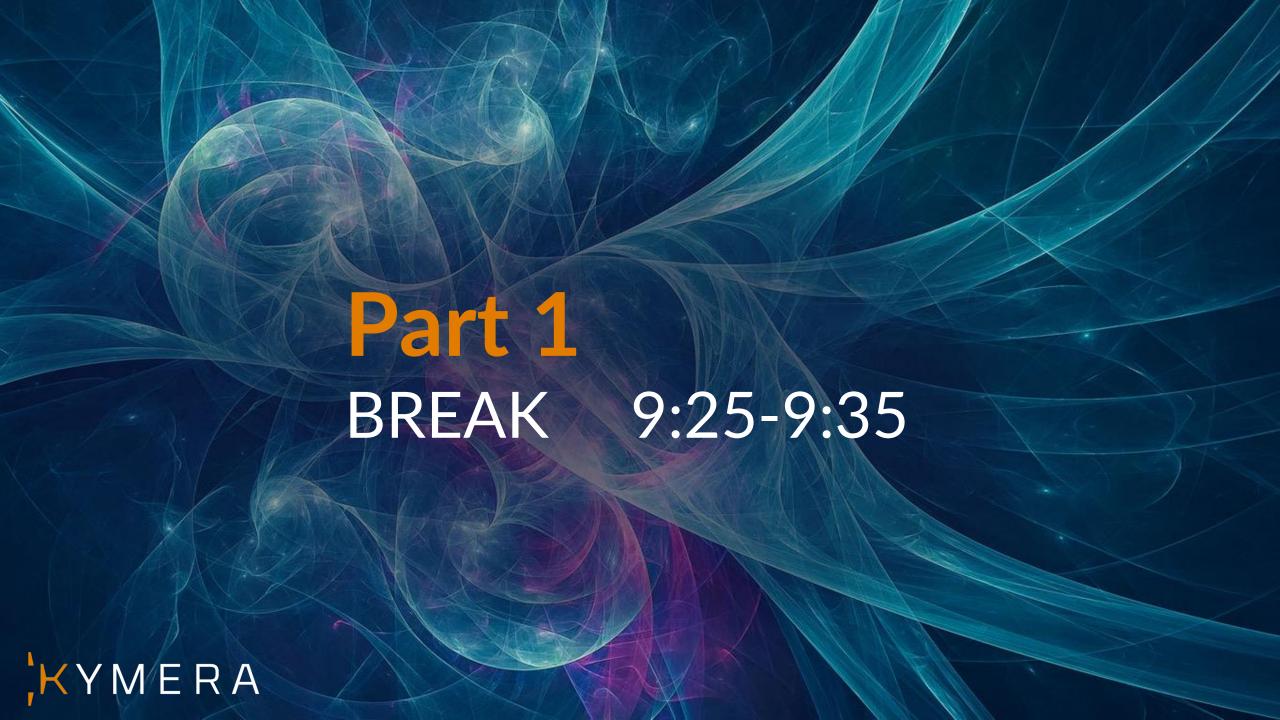
- Demonstrate biological PoC:
 - Expression pattern of proinflammatory genes
 - Correlation of proinflammatory gene expression with IRAK4 protein expression

Biomarker Endpoints

- Targeted MS of IRAK4 in skin biopsies
- IRAK4 immunofluorescence in skin biopsies
- Proinflammatory gene transcripts in skin biopsies
- Flow cytometry for IRAK4 in ex vivo treated whole blood

Workshop Agenda & Goals

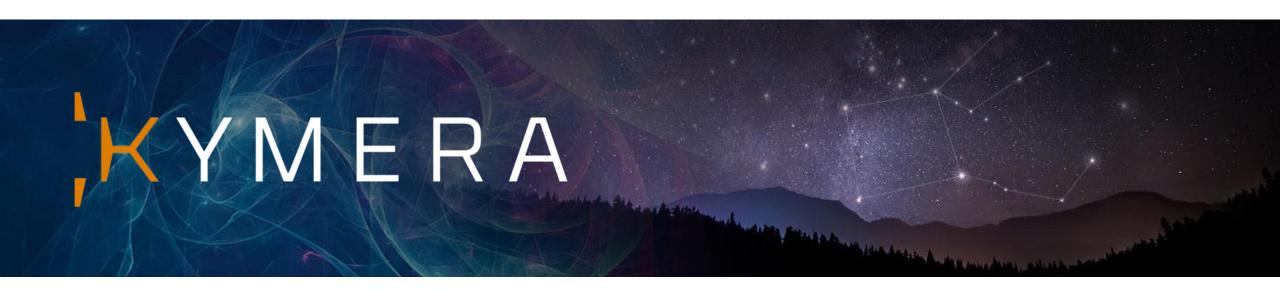
INTRODUCTION to Kymera and IRAK4 TPD program


PART1

- Summarize the non-investigational study and biomarker end points Discussion topics: Other opportunities / experiences from participants
- Define IRAK4 baseline expression levels and localization
 Discussion topics: Gaining support for both qualitative and quantitative assays
- Establish KT-474 degrader PoM ex vivo
 Discussion topics: Assessing assay dynamic range and defining values for samples < LLOQ
- Demonstrate how the NI study supported IRAK4 biological PoC in HS
 Discussion topics: Considerations moving from pre-clinical PoC into the clinic

PART2

- Introduce KT-474 Phase1 study and exploratory endpoints


 Discussion topics: Secondary vs exploratory endpoints for translational assays
- Demonstrate successful implementation of KT-474 Phase 1 PD assays Discussion topics: Additional methods for monitoring proof of degradation
- Present additional KT-474 Phase 1 PD assays not evaluated in NI Study
 Discussion topics: High level considerations when implementing translational biomarkers in clinical studies

Part 2: Implementing translational biomarkers in the KT-474 Phase1 trial

PART 2: Implementing Translational Biomarkers in the KT-474 Phase1 Trial Key Goals

Introduce KT-474 Phase1 study and exploratory endpoints

• Discussion topics: Secondary vs exploratory endpoints for translational assays

Demonstrate PoM results from the Phase 1 interim SAD analysis

Discussion topics: Additional methods for monitoring degradation

Present additional Phase 1 PD assays not evaluated in NI Study

• Discussion topics: Considerations for ex-vivo experiments

High Level considerations when implementing translational biomarkers in clinical studies

• Discussion topics: Quality control, Data TAT, Implementing changes when feasible and appropriate

KT-474 Phase 1 Trial Design

Double-blind, Placebo-controlled, Single Ascending Dose (SAD) and Multiple Ascending Dose (MAD) trial

Three-part Phase 1 Design

MAD Portion SAD Portion MAD Portion Healthy Volunteers Patient Cohort Healthy Volunteers

• 7 cohorts (up to 56 adult healthy subjects)

• 8 per cohort

- 5 cohorts (up to 60 adult healthy subjects)
- **12** per cohort (9:3 randomization)
- **Single** dosing (starting dose 25 mg)

(6:2 randomization)

- **14x** daily doses (starting dose 25 mg)

- 1 cohort (up to 20 AD and HS patients)
- Open-label
- **14x** daily doses

Endpoints

Primary Safety & tolerability Secondary/ Pharmacokinetic measures (half-life, bioavailability) **Exploratory** IRAK4 knockdown in PBMC SAD & MAD • Ex vivo response of whole **Exploratory** blood to TLR agonists (SAD & SAD & MAD MAD) and IL-1β (MAD only)

Exploratory

MAD Only

- IRAK4 knockdown in skin biopsies
- Proinflammatory cytokine and chemokine levels in skin biopsies (Patients only)
- Plasma C-reactive protein (HV and Patients) and cytokine levels (Patients only)

KT-474 Interim Phase 1 Healthy Volunteer SAD Overview

Interim Results (Cohorts 1-4)

- **32** subjects randomized
- 24 subjects administered KT-474
- 8 subjects administered placebo

Dosing

- Single dose administration of oral KT-474 tablet
- Dose levels (mg):

25

75

150

300

Pharmacokinetic (PK) Features

- PK profile consistent with oral daily dosing
- Predictable, dosedependent plasma exposures after single oral dose of KT-474
- Half-life:

25-32 hours

Safety & Tolerability

- No treatment-related adverse events
- No Serious Adverse Events

PART 2: Implementing Translational Biomarkers in the KT-474 Phase1 Trial Key Goals

Introduce KT-474 Phase1 study and exploratory endpoints

Discussion topics: Secondary vs exploratory endpoints for translational assays

Demonstrate PoM results from the Phase 1 interim SAD analysis

Discussion topics: Additional methods for monitoring degradation

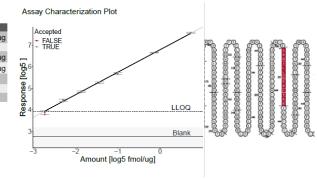
Present additional Phase 1 PD assays not evaluated in NI Study

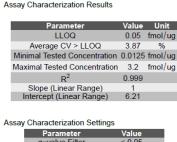
Discussion topics: Considerations for ex-vivo experiments

High Level considerations when implementing translational biomarkers in clinical studies

• Discussion topics: Quality control, Data TAT, Implementing changes when feasible and appropriate

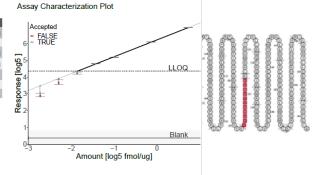
Methods Development: Measuring Degradation in PBMCs


Mass Spec

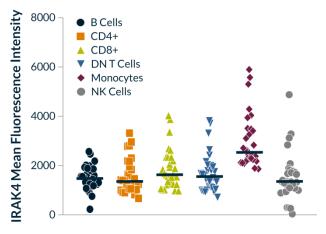

- Identification of most sensitive analytes
- Defining the linear range of the assay

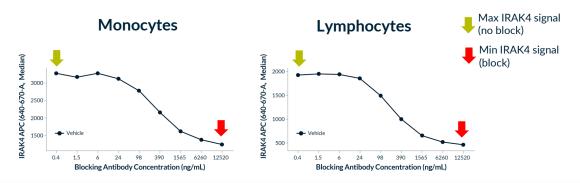
Parameter Value LLOQ 0.012 Average CV > LLOQ 6.94 Minimal Tested Concentration 0.012 Maximal Tested Concentration 3.2 R² 0.996 Slope (Linear Range) 1.04 Intercept (Linear Range) 6.79 Assay Characterization Settings

Assay Characterization Results



Zero Calibrator Filter 2 x blank intensity


Accuracy Filter


FLOW

Determination of assay range

Pre-dose Samples Provides Baseline IRAK4 Values

Blocking Antibody Utilized to Define the Assay Floor

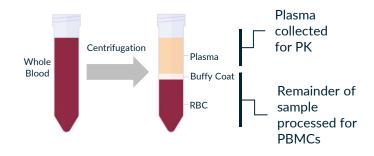
Each subject sample is stained +/- block

Peptide

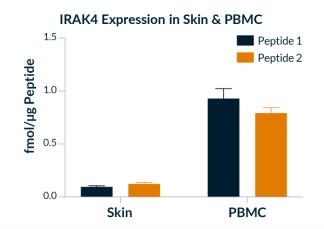
Developing MS Method in Healthy Donor PBMCs

Phase 1 blood draw limitations prevented a separate sample collection for MS

 Solution: retain cell layer after PK plasma collection & process within 4 hours

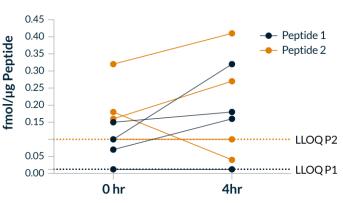

On site processing could not be performed immediately after blood draw

- Pilot study confirmed no loss of IRAK4 from 0-4 hrs. post collection
- KT-474 ex-vivo treatment of donor blood confirmation that PD can be measured

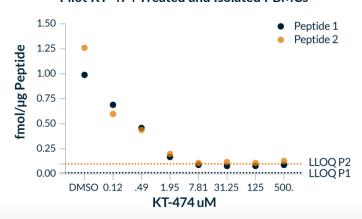

Comparison of IRAK4 levels in donor PBMCs to healthy donor tissue

PBMC expression levels are higher than human skin

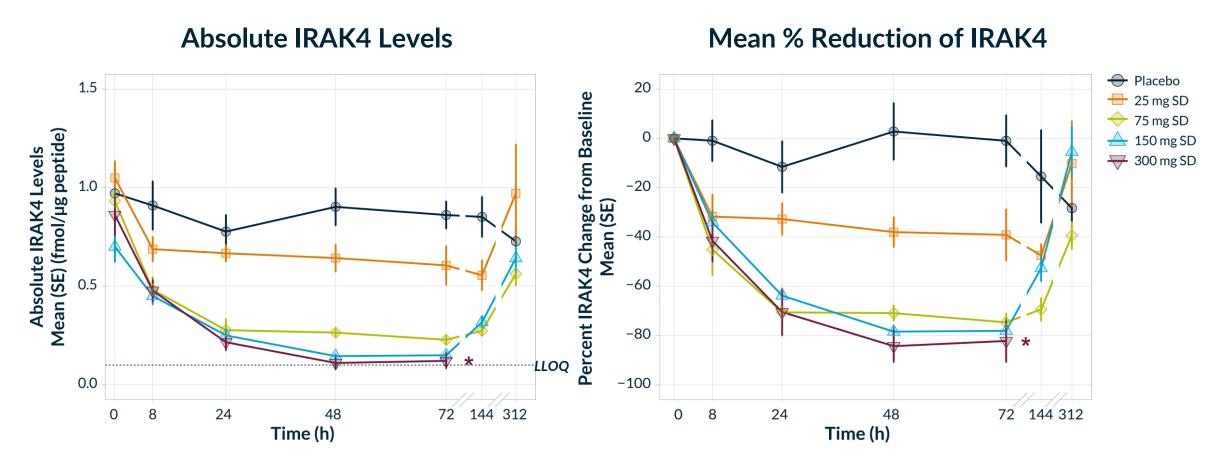
Proposed Clinical Process



Measurements of Donor Tissue and Blood

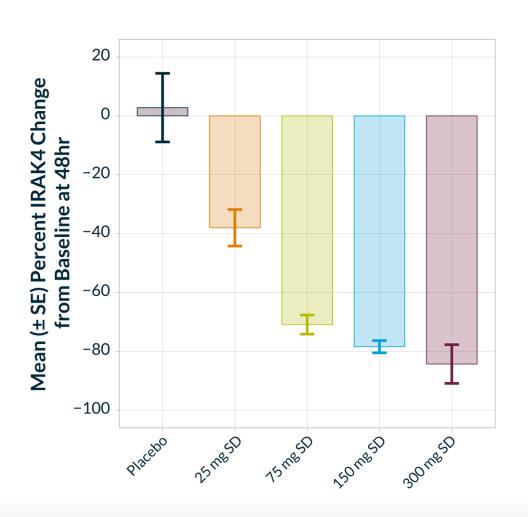


Pilot Mimicking Clinical Process with Donor Blood



Pilot KT-474 Treated and Isolated PBMCs

Successful Execution of IRAK4 MS Assay in Clinic


PBMCs Exhibit KT-474-driven IRAK4 Degradation after Single Oral Dose

LLOQ = Lower Limit of Quantitation

★ SAD4 144/312 h PD timepoints pending

IRAK4 Degradation >85% Achieved Following Single KT-474 Dose

Percent IRAK4 Reduction in PBMC at 48 Hours Post-Dose Using Mass Spectrometry

	Placebo (n=8)	Cohort 1 (n=6)	Cohort 2 (n=6)	Cohort 3 (n=6)	Cohort 4 (n=6)
KT-474 dose	-	25 mg	75 mg	150 mg	300 mg
Mean IRAK4 Change	+3%	-38%	-71%	-78%	-84%
Median IRAK4 Change	+16%	-41%	-71%	-78%	-90%
p value*		0.0057	<0.0001	<0.0001	<0.0001

* p-values relative to placebo

PART 2: Implementing Translational Biomarkers in the KT-474 Phase1 Trial

Key Goals

Introduce KT-474 Phase1 study and exploratory endpoints

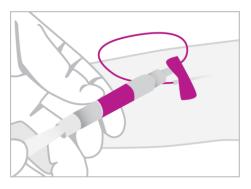
Discussion topics: Secondary vs exploratory endpoints for translational assays

Demonstrate PoM results from the Phase 1 interim SAD analysis

Discussion topics: Additional methods for monitoring degradation

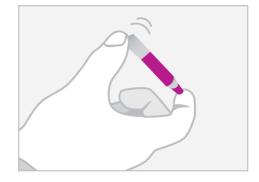
Present additional Phase 1 PD assays not evaluated in NI Study

Discussion topics: Considerations for ex-vivo experiments


High Level considerations when implementing translational biomarkers in clinical studies

• Discussion topics: Quality control, Data TAT, Implementing changes when feasible and appropriate

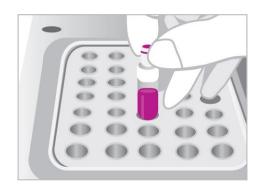
Whole Blood Ex Vivo Cytokine Stimulation Assay


TruCulture Tubes

- Null 782-001086
- S. aureus enterotoxin type B (SEB) 782-001124
- Lipopolysaccharide (LPS) 782-001087
- Anti-CD3 and Anti-CD28 782-001125
- CytoStim[™] 782-001333
- Gardiquimod (GDQ) 782-001269

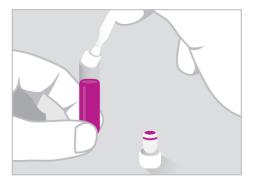
1. COLLECT

Draw 1 mL of blood directly into the TruCulture Tube and break off the plunger.



2. MIX

Gently invert tube to mix 3 to 5 times.


OptiMAP – 13 Analyte Multiplex Assay

ENA-78	IFN-γ	IL-12p70	TNF-α
IL-8	IL-2	IL-10	IL-6
	IL-17	IL-23	IL-1β
	IL-13	GM-CSF	

3. INCUBATE

Place tube in 37°C heat block for up to 24 hours.

4. SEPARATE

Manually insert valve to separate supernatant from the cells. Collect supernatant and cell layer for downstream analysis.

Cytokine Fold Induction of Healthy Donor Blood Stimulated with R848 or LPS TruCulture Tubes

Donor Blood

	ENA-78	IL-1β	IL-6	IL-8	IL-10	IL-13	TNFα
Donor A_LPS	3.9	20.2	3.6	5.5	2.2	1.2	19.1
Donor B_LPS	13.0	13.2	17.3	36.2	31.6	1.4	X
Donor A_R848	0.4	8.7	3.4	2.7	1.7	1.1	39.6
Donor B_R848	1.0	17.5	17.5	14.7	33.8	1.7	X

Preclinical assessment of TruCulture tubes using healthy donor blood:

- ≥3fold induction over baseline (unstim) detected for IL-1β, IL-8, IL-6, IL-10 and TNFα
- Level of induction is donor dependent but still robust and measurable
- In the clinic, collection of pre-dose sample will serve as each subject/patient control

Pressure Testing Ex-vivo Treatment of Whole Blood Prior to Incubation in TruCulture System

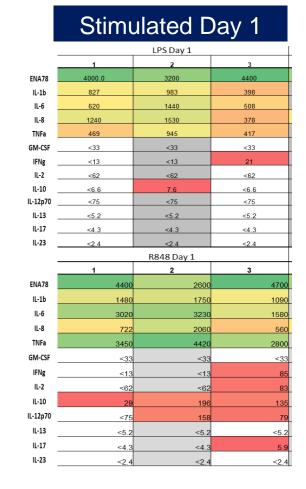
TRUCULTURE PROCEDURE

1. DRAW BLOOD Directly into truculture tube

2. INCUBATE in 37°C heat block for 24hours

3. SEPARATESupernatant from cells and collect for cytokine analysis

PILOT PROCEDURE


1. SOURCE WB Healthy donor blood

2. EX-VIVO HOLD 0 or 8 hours

3. TRANSFER
WB to truculture

4. INCUBATE in 37°C heat block for 24hours

5. SEPARATESupernatant from cells and collect for cytokine analysis

PART 2: Implementing Translational Biomarkers in the KT-474 Phase1 Trial

Key Goals

Introduce KT-474 Phase1 study and exploratory endpoints

• Discussion topics: Secondary vs exploratory endpoints for translational assays

Demonstrate PoM results from the Phase 1 interim SAD analysis

Discussion topics: Additional methods for monitoring degradation

Present additional Phase 1 PD assays not evaluated in NI Study

Discussion topics: Considerations for ex-vivo experiments

High Level considerations when implementing translational biomarkers in clinical studies

• Discussion topics: Quality control, Data TAT, Implementing changes when feasible and appropriate

Workshop Agenda & Goals

INTRODUCTION to Kymera and IRAK4 TPD program

PART1

- Summarize the non-investigational study and biomarker end points Discussion topics: Other opportunities / experiences from participants
- Define baseline expression levels and localization
 Discussion topics: Gaining support for both qualitative and quantitative assays
- Establish KT-474 degrader PoM
 Discussion topics: Assessing assay dynamic range and defining values for samples < LLOQ
- Demonstrate how the study supported IRAK4 biological PoC in HS Discussion topics: Considerations moving from pre-clinical PoC into the clinic

PART2

- Introduce KT-474 Phase1 study and exploratory endpoints
 Discussion topics: Secondary vs exploratory endpoints for translational assays
- Demonstrate successful implementation of KT-474 Phase 1 PD assays Discussion topics: Additional methods for monitoring proof of degradation
- Present additional KT-474 Phase 1 PD assays not evaluated in the NI study

 Discussion topics: High level considerations when implementing translational biomarkers in clinical studies